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Abstract 

Wearable electrocardiogram (ECG) monitoring is an 

effective method of screening for occult arrhythmia. 

However, signals from the wearable ECG monitoring 

device are often disturbed by various artifacts and noises 

originating from daily activities and which can 

significantly affect peak detection and ECG morphological 

feature extraction, leading to frequent false alarms for 

arrhythmia detection. Therefore, it is crucial to exclude 

ECG fragments with poor signal quality. In this study, we 

developed three xResNet-based ECG signal quality 

assessment models, trained on the Brno University of 

Technology ECG Quality Database. The first model can 

distinguish between ECG data in which the PQRST waves 

or only QRS complexes are visible from data in which these 

cannot be used for further analysis with a sensitivity (Se) 

of 98.87% and specificity (Sp) of 99.83%. The second 

model detects ECGs with visible PQRST waves with a Se 

of 97.15% and Sp of 95.95%. The third model classifies 

ECGs into data with PQRST visible, with only QRS visible, 

or unsuitable for analysis and achieves an accuracy (Acc) 

of 96.62%, 93.66%, and 98.97%, respectively. The results 

indicate that the proposed models can accurately evaluate 

the ECG signal quality during wearable monitoring, 

meeting the analysis requirements for arrhythmia. 

 

1. Introduction 

ECG signals are widely used in clinical diagnosis and 

treatment, such as cardiovascular disease diagnosis, 

arrhythmia identification, and sleep apnea detection. These 

applications generally require accurate detection of ECG 

signal feature points, as well as accurate measurement of 

ECG waveform morphology characteristics (such as 

amplitude, duration, polarity, and shape.) and interval 

characteristics (such as PR interval, and QT interval.) [1, 

2]. During the collection of long-term ECGs using Holter 

or wearable dynamic monitoring, a significant amount of 

noise is generated due to the subject's autonomous activity, 

which brings a great challenge to ECG analysis [3]. 

In literature, there is mainly a binary ECG signal quality 

approch: acceptable and unacceptable, where collected 

ECG segments are divided into two categories based on the 

complexity of noise in the ECG segments. It is the most 

widely used signal quality classification “standard”, 

especially promoted by the Physionet/Computing in 

Cardiology (CinC) 2011 [4], and it has been utilized in 

many related studies.  

Many signal quality indicators (SQIs) have been 

developed, including wave feature analysis and QRS 

complex analysis. In our previous work [5], the 

performance of quality assessment algorithms based on 

wave features, including time-domain, frequency-domain, 

and nonlinear features were analyzed. It detects ECGs with 

visible PQRST waves with a sensitivity of 92.12% and 

specificity of 92.19%. The Acc of data with PQRST visible, 

with only QRS visible, or unsuitable for analysis are 

90.74 %, 89.72%, and 97.60%. In 2008, Li et al. [6] 

proposed the bSQI signal quality index, which evaluates 

signal quality by comparing the QRS complexes detected 

by two different detection algorithms on a single ECG lead. 

Liu et al. [7] extended the bSQI based on multiple QRS 

detectors to improve signal quality assessment 

performance. Additionally, many methods have been 

developed based on the morphological and interval 

features of the QRS complex, but these features differ 

significantly between arrhythmic and normal ECGs. Such 

QRS-based signal quality assessment methods also require 

accurate and reliable QRS localization, which remains 

challenging in dynamic environments [8].  

Some scholars have also used deep learning algorithms 

for ECG quality assessment. Zhou et al. [9] used one-

dimensional convolutional neural networks (CNN) to 

identify low-quality ECG signals. Huerta et al. [10] 

transformed ECG signals into time-frequency graphs using 

continuous wavelet transform (CWT) and designed a CNN 

to classify ECG signal quality. In the above studies, deep 

learning models focused on the binary classification of 

acceptable and unacceptable signal quality.  
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Arguably, the classification of which ECG signal has 

good quality and which has poor quality also depends on 

the application at hand. Requirements on signal quality for 

disease screening are typically less strict than the 

requirements that are needed for disease diagnosis. In this 

study we therefore develop an ensemble of three signal 

quality assessment models that can be employed based on 

the desired application.The proposed models are all based 

on a xResNet34 [11] architecture and as application we aim 

at detecting the quality of ECG signals in wearable 

arrhythmia monitoring. For developing and evaluating the 

algorithm, the Brno University of Technology ECG 

Quality Database (BUT QDB) is used, which provides 

Class A, B, and C mobile ECGs. In class A, all waves in 

the ECG (i.e. P-wave, QRS-complex, T-wave) are clearly 

visible. In class B, only the QRS-complexes are clearly 

visible. In class C, the signal is deemed unsuitable for 

further analysis.  

The three proposed models were trained to perform 

three tasks: (1) identifying Class A and B signals, crucial 

for arrhythmia screening, (2) detecting Class A signals for 

accurate disease diagnosis, and (3) differentiating between 

Class A, B, and C signals. 

 

2. Methods 

2.1. Database 

The BUT QDB is an ECG quality evaluation database 

created by the cardiology team at the Department of 

Biomedical Engineering, Brno University of Technology 

[12]. The database consists of 18 long-term recordings of 

single-lead ECGs collected using a mobile ECG with a 

sampling frequency of 1,000 Hz. Class A, B and C were 

fully annotated in terms of ECG signal quality. In this study, 

the data was segmented into sliding windows of 10 s with 

a 5-s overlap. Further details regarding the data are 

provided in Table 1. 

 

Table 1. The details of 10-s data  

Class A B C Total 

Sample size 33,279 20,663 10,510 64,452 

 

2.2. Processing 

To facilitate the processing of ECG signals, this work 

employed minimum-maximum normalization to 

standardize the ECG segments to the range (0, 1). To 

reduce the computational complexity, the signals were 

downsampled to 200 Hz. 

 

2.3. xResNet34 

As mentioned before, the proposed models are based on 

xResNet34, This is a neural network architecture that 

consists of a series of Residual blocks and some relatively 

basic building blocks. The structure of Residual block [11] 

is illustrated in (a) of Figure 1, and it includes two 

convolutional layer (Conv), Each Conv's output was 

rescaled by batch normalization (BN), followed by a 

rectified linear activation unit (ReLU). Skip connections 

were utilized.  

The architecture of xResNet [11] is shown in part (b) of 

Figure 1, and consists of an Input stem and 4 Stages. In this 

paper, the xResNet34 network was used, where the Input 

stem includes 3 Convs, Stage 1 contains 2 Residual blocks, 

Stage 2 contains 3 Residual blocks, stage 3 contains 5 

Residual blocks, and Stage 4 contains 2 Residual blocks 

and 1 down sampling layer. The size of the convolutional 

kernel and the stride (s) are indicated in Figure 1. 

In this work, CrossEntropyLoss is used for classifier 

loss function. The neural network is trained using the 

stochastic gradient descent (SGD) optimizer with the a 

learning rate that is transformed during the iterative process, 

according to the following formula: 

𝜇𝑝 =
𝜇0

(1 + 𝛼 ∙ 𝑝)𝛽
 

Where, 𝜇0 is the initial learning rate, 𝑝  represents the 

relative value of the iteration process, 𝛼  and β  are 

hyperparameters. α = 10, β = 0.75, 𝜇0 is set at 0.01. The 

model was trained for 30 epochs to identify Class A and B 

signals. It was trained for 60 for detecting Class A signal 

and for 100 epoches for differentiating between Class A, B, 

and C signals.  

 

 
Fig 1. The architecture of the model based on xResNet. 

 

2.4. Evaluation methods 

For classification of two categories, Sensitivity (Se), 

Specificity (Sp), Accuracy (Acc), and Measure of Accuracy 

(Macc) are used as evaluation indicators. According to the 

label being positive or negative, four indexes were used: 

true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN). The evaluation indicators are 
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defined based on these indexes as: 

Se=TP/(TP+FN), 

Sp=TN/(TN+FP), 

Acc=(TP+TN)/(TP+FN+TN+FP), 

Macc=(Se+Sp)/2. 

For three-class classification, Aacc, Bacc and Cacc are 

the proportion of the total number of correct labels 

predicted for Class A, B and C respectively. Maccz is the 

proportion of the sum of predicted correct labels A, B and 

C to the total: 

Maccz=(Aacc+Bacc+Cacc)/3. 

A 5-fold cross validation scheme was used inthis study 

for the the evaluation of the proposed method. Additional,  

the models [5] based on Decision Tree and Features are 

used to compared. 

 

3. Results 

3.1. Results from three models 

Table 2. The result from model for arrhythmia scanning 

Fold Macc 

(%) 

Acc 

(%) 

Se 

(%) 

Sp 

(%) 

1 99.59 99.64 99.75 99.38 

2 99.44 99.74 99.95 98.62 

3 99.35 99.68 99.93 98.43 

4 99.4 99.74 99.94 98.71 

5 99.48 99.66 99.79 99.00 

Mean 99.46 99.69 99.87 98.83 

SD 0.078 0.046 0.094 0.371 

 

The model for arrhythmias scanning treats class A and B 

as positive and class C as negative. The results from the 5-

fold cross-validation are shown in Table 2. Calculating the 

average performance over all the folds, gives Macc, Acc, 

Se, Sp of 99.46%, 99.69%, 99.87%, 98.83%, respectively. 

 

Table 3. The result from model for arrhythmia diagnosis  

Fold Macc 

(%) 

Acc 

(%) 

Se 

(%) 

Sp 

(%) 

1 96.88 96.35 98.44 95.85 

2 96.69 96.70 97.25 96.12 

3 96.14 96.14 96.45 95.83 

4 96.3 96.31 96.83 95.76 

5 96.48 96.49 96.78 96.18 

Mean 96.50 96.40 97.15 95.95 

SD 0.296 0.210 0.775 0.189 

 

When training the model for arrhythmia diagnosis, we 

consider class A signals as positive, and class B and C 

signals as negative. The results are shown in Table 3, with 

an average performance: Macc of 96.50%, Acc of 96.40%, 

Se of 97.15%, Sp of 95.95%. 

 

Table 4. The result of the three-class classification 

Fold Maccz 

(%) 

Accz 

(%) 

Aacc 

(%) 

Bacc 

(%) 

Cacc 

(%) 

1 96.43 96.01 96.60 93.44 99.24 

2 96.40 96.03 96.71 93.44 99.05 

3 96.43 96.09 96.69 93.78 98.81 

4 96.36 96.07 97.02 93.15 98.91 

5 96.47 96.01 96.06 94.50 98.86 

Mean 96.42 96.04 96.62 93.66 98.97 

SD 0.042 0.036 0.349 0.519 0.174 

 

In this work, we also trained a three-class classification 

model on class A, B, and C signals, and the results are 

shown in Table 4, with average Maccz, Accz, Aacc, Bacc, 

Cacc 96.42, 96.04, 96.62, 93.66, 98.86, respectively. 

 

3.2 Comparision with model based on 

Decision Tree+Features 

Figure 2 shows the comparison of results between the 

model based on xResNet34 and Decision Tree+Features 

[5]. In the model for arrhythmia scanning, the Macc 

increased by 0.57%. For arrhythmia diagnosis, the Macc 

increased by 4.34%. For three-class classification, the 

Maccz increased by 3.74%. 

 

4. Discussion and conclusion 

In this study, we trained three ECG signal quality 

assessment models based on xResNet34, Compared with 

Decision Tree+Features, the results indicate that the 

performance of the quality evaluation scanning algorithm 

based on xResNet34 is superior. 

The quality evaluation scanning algorithm based on 

xResNet34 is an end-to-end algorithm without human 

intervention or manual design of intermediate steps. The 

results domonstrated that the proposed method can provide 

for reliable method for signal quality scanning for 

application during arrhythmia ananlysis in wearable ECG  

monitoring. 
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Fig 2 The comparison of results between xResNet34 

and Decision Tree+Features. 
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